Slightly Improved Sum-product Estimates in Fields of Prime Order

نویسنده

  • LIANGPAN LI
چکیده

Let Fp be the field of residue classes modulo a prime number p and let A be a nonempty subset of Fp. In this paper we show that if |A| p , then max{|A ± A|, |AA|} |A|; if |A| p, then max{|A ± A|, |AA|} v min{|A|( |A| p0.5 ), |A|( p |A| )}. These results slightly improve the estimates of Bourgain-Garaev and Shen. Sum-product estimates on different sets are also considered.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sum–product Estimates and Multiplicative Orders of Γ and Γ + Γ−1 in Finite Fields

Using a recent result on the sum–product problem, we estimate the number of elements γ in a prime finite field such that both γ and γ + γ−1 are of small order. 2010 Mathematics subject classification: primary 11T30; secondary 11B30.

متن کامل

Sum-Product and Character Sums in finite fields

In this talk I will present estimates on incomplete character sums in finite fields, with special emphasize on the non-prime case. Some of the results are of the same strength as Burgess celebrated theorem for prime fields. The improvements are mainly based on arguments from arithmetic combinatorics providing new bounds on multiplicative energy and an improved amplification strategy. In particu...

متن کامل

Pinned distance sets, Wolff’s exponent in finite fields and improved sum-product estimates

An analog of the Falconer distance problem in vector spaces over finite fields asks for the threshold α > 0 such that |∆(E)| & q whenever |E| & q, where E ⊂ Fq , the d-dimensional vector space over a finite field with q elements (not necessarily prime). Here ∆(E) = {(x1 − y1) 2 + · · ·+ (xd − yd) 2 : x, y ∈ E}. The second listed author and Misha Rudnev ([4]) established the threshold d+1 2 , an...

متن کامل

Sum-product Estimates in Finite Fields via Kloosterman Sums

We establish improved sum-product bounds in finite fields using incidence theorems based on bounds for classical Kloosterman and related sums.

متن کامل

ar X iv : m at h / 06 09 42 6 v 3 [ m at h . C O ] 1 5 O ct 2 00 6 SUM - PRODUCT ESTIMATES IN FINITE FIELDS VIA KLOOSTERMAN

We establish improved sum-product bounds in finite fields using incidence theorems based on bounds for classical Kloosterman and related sums.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009